Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 253: 116141, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428072

RESUMO

Rapid and precise detection of hydrogen peroxide (H2O2) holds great significance since it is linked to numerous physiological and inorganic catalytic processes. We herein developed a label-free and washing-free strategy to detect H2O2 by employing a hand-held personal glucose meter (PGM) as a signal readout device. By focusing on the fact that the reduced redox mediator ([Fe(CN)6]4-) itself is responsible for the final PGM signal, we developed a new PGM-based strategy to detect H2O2 by utilizing the target H2O2-mediated oxidation of [Fe(CN)6]4- to [Fe(CN)6]3- in the presence of horseradish peroxidase (HRP) and monitoring the reduced PGM signal in response to the target amount. Based on this straightforward and facile design principle, H2O2 was successfully determined down to 3.63 µM with high specificity against various non-target molecules. We further demonstrated that this strategy could be expanded to identify another model target choline by detecting H2O2 produced through its oxidation promoted by choline oxidase. Moreover, we verified its practical applicability by reliably determining extracellular H2O2 released from the breast cancer cell line, MDA-MB-231. This work could evolve into versatile PGM-based platform technology to identify various non-glucose target molecules by employing their corresponding oxidase enzymes, greatly advancing the portable biosensing technologies.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Catálise , Colina , Glucose
2.
Biosens Bioelectron ; 253: 116174, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432074

RESUMO

We herein present a novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction. The detection probe employed as a key component in this technique serves as a substrate for RNase H and triggers the PS-THSP reaction upon the RNase H-mediated degradation of the probe. As a consequence, a large number of long concatemeric amplification products could be produced and used to identify the RNase H activity through the fluorescence signals produced by the nucleic acid-specific fluorescent dye, SYTO 9. Importantly, the use of the gp32 protein allowed the PS-THSP reaction to be performed at 37 °C, ultimately enabling an isothermal one-step RNase H assay. Based on this sophisticated design principle, the RNase H activity was very sensitively detected, down to 0.000237 U mL-1 with high specificity. We further verified its practical applicability through its successful application to the screening of RNase H inhibitors. With its operational convenience and excellent analytical performance, this technique could serve as a new platform for RNase H assay in a wide range of biological applications.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Ribonuclease H , Técnicas Biossensoriais/métodos , Corantes Fluorescentes
3.
Anal Chem ; 95(48): 17629-17636, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976500

RESUMO

We herein describe a novel centrifugal microfluidic system to achieve multiple standard additions, which could minimize the effects of matrix interference and consequently lead to more accurate and reliable measurements of analyte concentrations in complex samples. The system leverages laser-irradiated ferrowax microvalves to automatically control fluid transfer on the disc without the need for external pumps or pressure systems, simplifying the procedures and eliminating the need for manual intervention. The disc incorporates metering chambers with rationally designed varying sizes, which could lead to the formation of six standard addition samples very rapidly in just 2.5 min. The final solutions are designed to contain a target component at gradually increasing concentrations but have an equal final volume containing the same amount of an analyte solution, thereby equalizing the matrix effect that is supposedly caused by the unknown components in the analyte solution. By utilizing this design principle, we were able to successfully quantify a model target component, salivary thiocyanate ions, that could be used as a biomarker for exposure to tobacco smoke. Our centrifugal microfluidic system holds great promise as a powerful analytical tool to achieve fully automated diagnostic microsystems involving a standard addition process.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Centrifugação/métodos
4.
Biosens Bioelectron ; 204: 114071, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151943

RESUMO

We herein describe a new multicolor fluorogenic RNA aptasensor to accomplish multiplexed detection of miRNAs. The stem-loop primer (SL primer) entailing a fluorogenic RNA aptamer (FRA) antisense sequence is designed to anneal to target miRNA at its 3' overhang, which would be reverse transcribed by reverse transcriptase (RT) to produce the cDNA sequence followed by the degradation of target miRNA. The T7 promoter-containing primer (T7 primer) is then annealed to the 3' end of the extended cDNA sequence and the following RT-promoted extension in both directions produces the T7 promoter-containing double-stranded DNA (T7 dsDNA). T7 RNA polymerase finally transcribes the T7 dsDNA to produce a large number of RNA transcripts containing FRA sequence, which would produce intense fluorescence signals by forming fluorescent complexes with cognate fluorogens, reflecting the amount of target miRNAs. Based on this unique design principle employing the SL primers to encode several different FRAs with distinct fluorescence profiles, target miRNAs were very specifically determined in a multiplexed manner down to a subpicomolar level. The practical applicability of this technique was also verified by reliably quantifying target miRNAs in serum and human cancer cell lysates.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , MicroRNAs , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA , Humanos , MicroRNAs/genética
5.
Biosens Bioelectron ; 194: 113587, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34455224

RESUMO

To realize the full potential of the CRISPR/Cas system and expand its applicability up to the detection of molecular interactions, we herein describe a novel method to identify protein/small molecule interactions by utilizing the CRISPR/Cas12a collateral cleavage activity. This technique employs a single-stranded activator DNA modified with a specific small molecule, which would switch on the CRISPR/Cas12a collateral cleavage activity upon binding to crRNA within the CRISPR/Cas12a system. When the target protein binds to the small molecule on the activator DNA, the bound protein sterically hinders the access of the activator DNA to crRNA, thereby promoting less collateral cleavage activity of CRISPR/Cas12a. As a consequence, fewer reporter probes nearby are cleaved to produce accordingly reduced fluorescence signals in response to target protein. Based on this unique design principle, the two model protein/small molecule interactions, streptavidin/biotin and anti-digoxigenin/digoxigenin, were successfully determined down to 0.03 nM and 0.09 nM, respectively, with a fast and simple detection workflow (11 min). The practical applicability of this method was also verified by reliably detecting target streptavidin spiked in heterogeneous human serum. This work would provide great insight to construct novel strategies to identify protein/small molecule interaction by making the most of the CRISPR/Cas12a system beyond its superior capabilities in genome editing and molecular diagnostics.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Clivagem do DNA , DNA de Cadeia Simples , Edição de Genes , Humanos
6.
Biosens Bioelectron ; 191: 113444, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175646

RESUMO

We herein describe a novel method to identify thyroid hormone (TH)/thyroid hormone receptor (TR) interaction, termed aptamer-assisted protein-induced fluorescence enhancement (AptPIFE). In this method, a detection probe consisting of an RNA strand incorporating TH-specific aptamer and a Cy3-labeled DNA strand holds TH in close proximity to Cy3. The corresponding TR then binds to the TH near Cy3, consequently stimulating Cy3 to emit a significantly enhanced fluorescence through PIFE phenomenon. Based on this simple yet efficient design principle, we successfully identified the interaction of TH with TR within 10 min, down to 0.37 pM with excellent specificity. The practical and robust applicability of this method was also successfully validated by properly screening TR antagonists and reliably quantifying TH present in real clinical serum samples from patients with hyperthyroidism and healthy volunteers.


Assuntos
Técnicas Biossensoriais , Receptores dos Hormônios Tireóideos , DNA , Humanos , Proteínas , Hormônios Tireóideos
7.
RNA Biol ; 15(10): 1319-1335, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30293519

RESUMO

Most small noncoding RNAs (sRNAs) are known to base pair with target mRNAs and regulate mRNA stability or translation to trigger various changes in the cell metabolism of Escherichia coli. The SdsR sRNA is expressed specifically during the stationary phase and represses tolC and mutS expression. However, it was not previously known whether the growth-phase-dependent regulation of SdsR is important for cell growth. Here, we ectopically expressed SdsR during the exponential phase and examined cell growth and survival. We found that ectopic expression of SdsR led to a significant and Hfq-dependent cell death with accompanying cell filamentation. This SdsR-driven cell death was alleviated by overexpression of RyeA, an sRNA transcribed on the opposite DNA strand, suggesting that SdsR/RyeA is a novel type of toxin-antitoxin (T/A) system in which both the toxin and the antitoxin are sRNAs. We defined the minimal region required for the SdsR-driven cell death. We also performed RNA-seq analysis and identified 209 genes whose expression levels were altered by more than two-fold following pulse expression of ectopic SdsR at exponential phase. Finally, we found that that the observed SdsR-driven cell death was mainly caused by the SdsR-mediated repression of yhcB, which encodes an inner membrane protein.


Assuntos
Toxinas Bacterianas/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Sistemas Toxina-Antitoxina/genética , Proteínas da Membrana Bacteriana Externa/genética , Toxinas Bacterianas/genética , Morte Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética
8.
RSC Adv ; 8(70): 39913-39917, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-35558217

RESUMO

We herein describe a novel and efficient method for the detection of protein/small molecule (SM) interactions, which relies on the protein-induced fluorescence enhancement (PIFE). In this method, a duplex probe is designed to position Cy3 and SM at the optimal distance to maximize the effect of PIFE, which is utilized as the key component. In the presence of target proteins that bind to SM, the Cy3 is guided close to the target proteins, which significantly enhances the fluorescence signal through a process of PIFE. With this approach, we successfully analyzed a model target protein, streptavidin (STV) that interacts with biotin (BTN) in less than 10 min without any washing steps. In addition, the practical applicability of this method was demonstrated by reliably determining STV in human serum. Finally, the universal applicability of this method was demonstrated by monitoring the interaction between folate and folate receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...